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ABSTRACT

Practical simplified procedures are developed in this paper for

calculating estimates of parameters of the negative binomial distri-
bution with probability function

r (x + k)
x! T (k)

£(x) = P - p)*%; x=0, 1, 2...

where 0 < p <1 and k > 0. Moment estimators, maximum likelihood
estimators, and estimators based on moments and frequencies in
selected classes are given both for the complete and for the trun-
cated (with wmissing zero class) distribution. To facilitate calcu-
lation of the various estimators given, a table.of the function

-p ln p/(1 - p) with entries to six decimals at intervals of 0.001l

for the argument p, is included. 1Illustrative examples are also
included. ‘
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TECHNICAL MEMORANDUM X-53372

ESTIMATION IN THE NEGATIVE BINOMIAL DISTRIBUTION
SUMMARY

Practical simplified procedures are developed in this paper for
calculating estimates of parameters of the negative binomial distri-
bution with probability function

x + k
f(X) =—L‘?—Pk(1 - P)x y X = 0, 1) 2...

x ! 1 (k)

where 0 < p <1 and k > 0, Moment estimators, maximum likelihood
estimators, and estimators based on moments and frequencies in
selected classes are given both for the complete and for the trun-
cated (with missing zero class) distribution. To facilitate calcu-
lation of the various estimators given, a table of the function

-p 1n p/(1 - p) with entries to six decimals at intervals of 0.001
for the argument p, is included. Illustrative examples are also
included.

I. INTRODUCTION

The negative binomial distribution is used extensively for the
description of data that are too heterogeneous to be fitted by a
Poisson distribution. Since much of the data collected in studies
of atmospheric phenomena exhibit marked heterogeneity, this distri-
bution is of particular interest to aerospace scientists. It has
been considered by numerous investigators, among whom are Greenwood
and Yule [6], Fisher [5], Haldane [7], Anscombe {[1], and Bliss and
Fisher [2]. Samples from this distribution when zero observations

are missing have been studied by David and Johnson [4], Sampford [10],

Rider [9], Hartley [8], and by Brass [3]. This paper is primarily
concerned with estimation in the truncated negative binomial distri-
bution from which the zero observations are missing. Consideration




is also given to estimation in this distribution when there is no
truncation, Tables of the function, -p 1n p/(l - p), which are
useful in calculating estimates in both cases, are included.

II. THE PROBABILITY FUNCTION AND ITS MOMENTS

The probability function of the negative binomial distribution
may be written as

p°(l -p)*; x=0,1, 2..., (1)

so that £(0) = pk. The form in which this function was considered
by Fisher [5] follows from (1) when we make the transformation
q= (1 - p)/p. A form considered by Anscombe [1] follows upon
making the transformationm = k(1 - p)/p = kq. For the purposes
of this paper, the form given in (1) is considered preferable.

When the zero observations are removed, the probability function
for the resulting truncated distribution becomes

kep - X
fp) = e PR P TR, s (2)

k) @ - pK)

The factorial moments of the truncated distribution are

P (k+ 1) 1 - i
N = <
r (k) (L - pK)

From (3) and from (2) it follows that




=, = l1-p
M1 = WK (1-pk)(P R

_ k(k +1) 1-p, _ l1-p
“21 T T )% = uk + D), O)
k+1
ki 1
fp(l) =P = 1p - ( - P) = upk+1.
- P

I1I. ESTIMATION IN THE TRUNCATED DISTRIBUTION

Since estimating equations which result from equating the first
two sample moments to corresponding distribution moments do not lead
to explicit solutions, David and Johnson [4] considered explicit
estimators based on the first three sample moments, but found that
they were quite inefficient. Sampford [10] subsequently developed
a reasonably rapid iterative technique for solving the two-moment
estimating equations, but ultimately concluded that the values thereby
obtained could often serve only as first approximations for use in an
iterative solution to the maximum likelihood estimating equations,
Later Brass [3] derived explicit estimators based on the first two
moments and the density of ones, which turned out to be reasonably
efficient for most combinations of distribution parameters. The
Brass estimators follow when the last equation of (4) is solved for
pk to obtain

p¥ = P/ p, (5)

and this value is substituted in turn into the first and the second
equation of (4). On equating the sample mean and variance to the
distribution mean and variance and the relative frequency of ones
in the sample to f7(l) = P, the Brass estimators become



= *= ' .
bo B0y, ok PR - ny/m
p s2(1 = ) and k - p* s (6)
where
R
X =Z xny/n,
x=1
)]
R
82 =Z (x - X)2 ng/(n - 1),
x=1

in which ny is the number of sample observations for which the random
variable X = x, n is the total number of sample observations and R
is the largest sample observation.

Alternate estimators based on the first two moments and the
density of ones follow when we take logarithms of the third equation
of (4), solve for (k + 1) to obtain

 + 1y = 2E ®
ln p

and subsequently substitute this value into the second equation of (4).
When x and s? are equated to j and ,,, respectively, and n,/n is
equated to P, the resulting equations become




€))

Although the estimator given above for p is not in explicit form,
linear inverse interpolation in the accompanying table of the function
-p In p/(1 - p) quickly yields the required estimate to as many as
four decimal places.

The estimators given in (9) and the Brass estimators given in (6)
utilize information provided by sample values X, 82 and ny/n, but the
precise manner in which this information is employed differs in the
two cases. Actually, with only two parameters to be estimated,
sufficient information is provided by x and n,/n. As we demonstrate
below, it is unnecessary to use the sample variance s2,

When the expression for pk given in equation (5) is substituted
into the first equation of (4), we simplify to obtain

R=2-F
1-p

(10)

(u-p+ (@ -P)

1-p

k+1-=

On taking logarithms of the third equation of (4) and solving for
(k + 1), we have




(k +1) = M (11)
In p

On setting the right side of (4) equal to the right side of the second

equation of (10) and letting y = x and P = n,/n, we obtain the following
estimating equation in p alone. :

() = | - 1 4 (2T Da) R InRl_ mxy (12)
np 1 -p ny

With the aid of the accompanying table of -p ln p/(l - p), it is
relatively simple to solve this equation for the required estimate
p*** using linear interpolation as indicated below. We need only
find two consecutive tabled values of p such that 1n(ni/nl) is in
the interval (Gj, Gi41).

p G(p)

P G(p;)
ek 1n (n;{/n 1)

Pi+l G(Pi+1)

With_p*** thus determined, we employ the first equation of (10),
with p = x and P = ny/n to calculate




KRR p

The form of k*** is the same as the Brass estimator given in (6), the
only difference being that here p*** is a root of estimating equation
(12), whereas the Brass estimator, p*, is given by the first equation
of (6). To distinguish between the different estimators considered
here, a single asterisk denotes the Brass estimators, double asterisks
denote the alternate estimators of equation (9) and triple asterisks
denote estimators based on the sample mean and the sample proportion
of ones.

Of the three estimators considered, those given by Brass enjoy

the advantage of being easily calculated. The sampling properties

of the estimators, based on the sample mean and the observed proportion
of ones, require further investigation, but they are relatively easy

to calculate with the aid of the accompanying table of -p 1n p/ (1 - p),
and they might be expected to be asymptotically more efficient and
perhaps less affected by bias than the other two estimators. Certainly,
any of these estimators would be satisfactcry as first approximations
in an iterative solution of the maximum likelihood estimating equations.

Maximum Likelihood Estimation

The likelihood function for a random sample of size n from the
truncated distribution is

n
k 0 —— . )
L = {__2___] Il Elﬁfi;tiil a - p)xl‘ (14)

1 -pk] i=1  xi'r (k)

On taking logarithms of (14), differentiating with respect to p and k
in turn, and equating to zero, we obtain the estimating equations



dln L nk nkpk'l nx
op p l-pk 1-p

il
|
+
1
]
vO

(15)

ok 1 - pk

R X
dln L npkln p -1
n ln p + ——m + ny k +3j-1) = 0.
x=1 j=1

Following Haldane [7] and Sampford [10], these equations may be more
conveniently rewritten as

k(l'P)=}-{
p(l - pk)
(16)
R R
-pln p -1
= — Z(k'i-x-l) zni
l1-p nx
x=1 i=x

It is of interest that the first equation of (16) equates the distribution
mean given by the first equation of (4) to the sample mean, x. The usual
maximum-1likelihood iterative procedures can be employed to arrive at
solutions, but by taking advantage of the table of -p 1ln p/(1 - p) and
following a procedure of Sampford [10], the computational labor involved
can be greatly reduced. 1In some ihstances, the computational labor can
be still further reduced by modifying Sampford's procedure. Begin with
an initial approximation k 1)» which might be obtained using any of the
estimators previously discussed. Evaluate the right side of the second
equation of (16) and interpolate in the table of -p 1n p/(l - p) to
obtain a first approximation P(1)- Rewrite the first equation of (16) as




H(k, p) = —— - X = 0, 17)

The problem of solution is now reduced to that of finding two values
k(i) and ki) ina sufficiently narrow interval with H; and Hj4) of
opposite signs. Once such values have been found, the required estimates
follow by linear interpolation as indicated below. '

k P H

kj Pi Hy

-~ ~

k P 0
kivl Pi+1 Hin

The symbol (~) serves to designate estimators obtained by the principle
of maximum likelihood,

IV, ESTIMATION IN THE COMPLETE DISTRIBUTION

Although numerous estimators for parameters of the negative
binomial distribution have been proposed, we shall examine here only
estimators based on (1) the first two moments, (2) the first moment
and the proportion of zero readings, (3) the first moment and the
proportion of ones, and (4) the method of maximum likelihood.

In the parametric form considered by Anscombe [1], which follows
from equation (1) on setting m = k(1 - p)/p, the mean and second central
moment of the complete negative binomial distribution are, respectively,



(18)
m
Mo = m(l + E),

Moment Estimators.

The usual moment estimators obtained by equating sample moments to
distribution moments then follow as

m* = X,
(19)
o+ = 22
s2 - x

It has been pointed out by Fisher [2] that X is a fully efficient
estimator of m, but that the efficiency of k* is somewhat low for some
combinations of m and k. 1In general the efficiency of K* is high for
small values of the mean and large values of k. More precise statements
concerning the efficiency of k* are given on page 185 of the 1941 paper
by Fisher [5], and on page 371 of Anscombe's paper [1].

Estimators Based on Mean and Proportion of Zeros.

Anscombe [1] found the efficiency of estimators based on the mean
and the proportion of zeros to be reasonably high for appropriate
combinations of m and k. The higher efficiencies occur with the smaller
values of m and the smaller values of k. The estimating equation for
k in this case is

X _k** n
@+ = = _nE (20)

and the estimator for m is the sample mean as in the usual moment estimators,
previously discussed. Bliss [2] writes this equation in the form

10




K**1n(l + ®/k**) = In(n/ng), (21)

and suggests solving for k** by a trial-and-error procedure.

If we adhere to the parametric form of the negative binomial
probability function given here in (1), the estimating equations in
the case under consideration assume a form which permits a rapid and
simple solution by linear inverse interpolation in the table of
-p 1n p/(1-p). With the sample mean and the sample proportion of zeros
equated to corresponding distribution values, the estimating equations,
when equation (1) is the density, are

[
=]

ng/n = p*,

(22)

M
Il

x = k(1 - p)/p.
On taking logarithms of the first equation of (12) and solving for k,

we have

1n(ng/n)

k = —————, (23)
lIn p

On solving the second equation of (22) for k, we have

k = px/(1 - p). (24)

Equate the right side of (23) to the right side of (24) and simplify to
obtain

-p In p 1n(n/ny)
= . (25)
1-p X

11



In this form, it is a simple matter to evaluate the right side of (25),
and read the estimate p** from the accompanying table of -p 1ln p/(1 - p).
With p** thus determined, the corresponding estimate of k follows from
(23) as

k** = P % (26)

with considerable saving in labor over the computational procedures
otherwise necessary.

Estimators Based on Mean and Proportion of Ones.

Estimators based on the mean and the proportion of ones seem likely
to be preferred over estimators based on the mean and the proportion of
zeros, when n, > n,. The properties of these estimators are being inves-
tigated further, but on the basis of preliminary studies, their inclusion
here seems warranted. 1In this case the estimating equations are

ny/n = kpk(l - p),

(27)
x = k(1 ~ p)/p.
Divide the first of these equations by the second, and we have
n,/nkx = pk+1. (28)
Take logarithms of (28) and solve fof k = 1 to obtain
In(n,/nX)
k+1=—— (29)
lIn p

12




Solve the second equation of (27) for (k + 1), and we find

k+ 1= + . (30)

On equating the right side of (30) to the right side of (29) and
simplifying, we have

-p 1 1 -
PP G+ =) = in(a¥/ny). (31)
l -p p

This equation is only slightly more difficult to solve than (25). With
the aid of the table of -p 1n p/(1 - p), it is quite easy to find
consecutive values of p such that p*** is in the interval (p;, Pi+l)-
Once p*** has been determined, k*** follows from (30) as

(32)

Note that k*** differs from K given in (26) only in the substitution
of p*** for p**,

Maximum Likelihoqd Estimators.

Although maximum likelihood estimation in the complete negative
binomial distribution has been quite fully discussed by Fisher [5],
Anscombe [1]}, Bliss [2] and others, applicable estimators are included
here as a matter of convenience. With the estimating equations obtained
by equating to zero, the partial derivatives of the logarithm of the

likelihood function with respect to p and k are

13




(33)
R X
In L -
oln =n1np+z nXY(k+j-1)1=0.
ok L :
x=1 j=1
L J
These equations reduce to
k(1 - p) -
————— _x’
P
(34)
1 K R R
- n -
—E—P=—-_- E(k_+x-1)12n1.
l1-0p nx
x=1 i=x

Equations (34) can be solved by standard iterative procedures, and here
again the accompanying table of -p ln p/(l - p) is useful. As was indi-
cated in the truncated case, we might begin with a first approximation
k1) and employ the second equation and the table of -p ln p/ (1L - p) to
obtain a first approximation p(1). Write the first equation of (34) as

k(l - -
Q(k,p) = —5-—5—21 -x =0, (35)

and our problem is reduced to finding approximations k(i) and k(j41)
such that Qi) and Q(i41) are of opposite signs. Final estimates are

14




then obtained by linear interpolation as indicated provided the interval
between k(i) and k(i+1) is sufficiently narrow.

k P Q) =~ 5
k@ P Qi)

k P 0

kKi+1)  P(i+l) Q(i+1)

Any of the methods previously described will serve to provide a
| satisfactory first approximation k(l)‘

V. ILLUSTRATIVE EXAMPLES

Complete Negative Binomial Distribution. To illustrate the
calculation of estimates in the complete negative binomial distribution,
we consider a sample reported by P. Garman on the counts of red mites on
apple leaves, which was previously examined by Bliss [2]. These data
are given below.

No. mites
per leaf X 0 ‘ 1 ‘ 2 3 l 4 ‘ 5 l 6 ‘ 7 ‘ 8+4J
No. leaves|| nx || 70 ‘ 38 ' 17 ] 10 ] 9 ' 3 ‘ 2 ] 1 l 0 l
observed

15



7
For this sample, n = 150, ny = 70, n, = 38, E: X ng = 172,

x=0

7
E: x®ny = 536, x = 1.14667, and s2 = 2,27365.

x=0

Estimates based on the first two moments follow from equations (19) as

m* = 1.14667,
' (1.14667)2
K* = = 1.16670,

2.27365 - 1.14667

Estimates based on the first moment and the proportion of zeros
follow equation (25), which for the data given here becomes

-p 1n 1n(150/70
P P = ( ) = 0,6646 5509,

1-p 1.14667

Interpolating from the accompanying table, we have

p** = 0.46391,

and from equation (26)

16




ok 246391
.53609

(1.14667) = 0.9923,

which agrees with the value more laboriously computed by Bliss without
benefit of the table employed here.

Estimates based on the mean and the proportion of ones follow on
solving equation (31), which for our sample becomes

72
1n<;—%> = 1.50990832.
38

-p 1ln l «~
3p) = =Xt [1.14667 + p]
1-p p

(]

With the aid of the accompanying table, it is quickly established that
.480 < p*** < 481, The final estimate is determined by linear inter-
polation as shown below.

P J(p)
.4810 1.50967381
.4808 1.50990832
.4800 1.51084732

Accordingly, p*** = 0.4808, and from equation (32)

_0.4808
1 0.5192

k***

(1.14667) = 1.0619.

17



Maximum likelihood estimates can be calculated from equations (34)
with the aid of the table of -p 1n p/(l - p) or by following the technique
of Bliss and Fisher [2]. To four decimal places, both procedures lead
to the estimate

~

k = 1.0246,

Calculations based on equations (34) and the table of -p ln p/(1 - p)
are sketched below. As a first approximation to k, we select k** = 0,9923
(based on the mean and the proportion of zeros) which we round off for
ease of calculation to k(l) = 1.0000, Accumulating on a desk calculator,
with k = 1, we obtain

7 7
E:(x)-lEZtﬁ_= 114.9261904.
x=1

i=x

On substituting this value into the second equation of (34) we calculate

-p In p 1
= (114.9261904) = 0.66817552,
1 -p 172

Interpolating in the table of -p ln p/(l - p), we have as a first
approximation to the required estimate of p,

P(1y = 0.46829.

When these values for k(i) and P(1) are substituted into the first
equation of (34), we have

1(1 - 0.46829)
0.46829

= 1,13543 < x = 1.14667.

18




Since both the moment estimate and the estimate based on the mean
and the proportion of ones exceed our first approximation, it seems
appropriate that our second approximation should be greater than the
first. Accordingly, we select k(z = 1,03. Again accumulating on a
desk calculator, but this time with k = 1.03, we calculate

7 7

;ﬂ (x + 0.03)"! }: nj = 112.1650693.
jA—

x=1 i=x

As with the previous approximation, this value is substituted into the
right side of the second equation of (34) and on interpolating in the
table of -p 1n p/(1 - p), we find as the second approximation

P(2) = 0.47267.

Our final estimate, k = 1.0246, is arrived at from the first equation
of (34) by interpolation as shown below.

k k(1 - p)/p
1.0300 1.14911
k = 1.0246 1.14667 = x
1.0000 1.13543

To the number of decimals given, the value obtained here for k is in
agreement with that calculated (perhaps more laboriously) by Bliss.

Auxiliary tabulations involved in the above calculations are
included in the following table.

‘C
19



’ k +x - 1)°}
x n, ;ﬁni
i;; k=1 k =1,03
0 70 150
1 38 80 1.00000000 0.97087378
2 17 42 .50000000 .49261083
3 10 25 .33333333 .33003300
4 9 15 .25000000 .24813895
5 3 6 . 20000000 .19880715
6 2 3 .16666667 .16583747
7 1 1 .14285714 .14224751
7 7
}: x +k - 1).1 }: nj 114,9261904 112.1650693
x=1 i=x

A summary of the various estimates for the particular sample under
consideration is contained in the following table,

Parameters Estimates
Mean and Mean and
M.L. Moments Freq. of Zeros Freq. of Omes
k 1.02459 1.16670 0.9923 1.0619
m 1.14667 | 1.14667 1.14667 1.14667
p 0.47189 0.50433 0.46391 0.4808
q 1.11915 0.98283 1.15557 1.07983

20




In this example, estimates based on the mean and the frequency of
zeros are in closest agreement with the maximum likelihood estimates
while the moment estimates differ by the greatest amount.

Truncated Negative Binomial Distribution. To illustrate estimation
in the truncated negative binomial distribution, we consider a sample of
chromosome breakage which was originally presented by Sampford [10].
Data for this sample follows.

»
L
S

w
[~
[
B

No. preats |
|

No. Observations

I

13 13
For these data, n = 32, n, = 11, E: X ny = 110, zz: x%ny = 686,
x=1 x=1

x = 3.4375, and s2 = 9.9315,

Estimates based on the first two moments as computed by Sampford are

= 0.633 and p = 0.2346.

Brass estimates based on the first two moments and the proportion
of ones follow from equations (6) as

= 0.2345,

e~
]

% _ 3.4375 ( 10
(1
9.9315 32

.2345 (3.4375) - (11/32
k* = 0 > ( ) - (1/32) = 0.6040.

0.7655

21



Alternate estimators based on the first two moments and the
proportion of ones follow from equations (9). For these data, the
first equation of (9) becomes

-p lnp , 3.4375 10
- 1n (=) = 0.439814,
1 -p 9.9315 + 3.43752 - 3,4375 11 .

Inverse linear interpolation in our table yields the required estimate

p** = 0.2307.

From the second equation of (9), we have

o o 0.2307
0.7693

[5.2363636] - 1 = 0.570.

Estimates based only on the mean and the proportion of ones follow
from equations (12) and (13). For those.data, equation (12) becomes

21 7 [-p 1 1
Glp) = [2.4375 + ] [ L p} = In (;—2> = 2.30258509.
L 32p l1-p 11

With the aid of the table of -p 1ln p/(l1 - p), we quickly determine that
the required estimate p*** is in the interval (0,202 to 0.203), and we
interpolate for the final estimate as indicated.

22




P G(p)
0.2030 2.30291889
0.2025 2.30258509
0.2020 2.30226898

With p*** = 0,2025, we substitute in equation (13) and compute

k***

~0.2025 (3.4375) - 11/32

.7975

= 0.4418.

Maximum likelihood estimates can be computed from equations (16)

with the aid of the table of -p ln p/(1 - p) as described by Sampford [10]
in much the same manner as maximum likelihood estimates were calculated
in this paper for the complete negative binomial distribution. Alter-
nately, the technique described by Hartley [8] might be used. 1In either
case the final estimates for the sample under consideration are

P = 0.2113 and kK = 0.493,

A summary of the various estimates for the sample discussed is
presented in the following table.

Parameters Estimates
Mean and
M.L. Moments Brass Alternate Prop. Ones
k 0.493 0.633 0.6040 0.570 0.4418
m 1.8402 2.0652 1.9717 1.9007 1.7399
P 0.2113 0.2346 0.2345 0.2307 0.2025
q 3.7326 3.2626 3.2644 3.3346 3.9383

23



Attention is invited to the close agreement exhibited here between
estimates based on the mean and the proportion of ones with the maximum
likelihood estimates in contrast with the rather wide discrepancies
between the moment estimates and the maximum likelihood estimates.

VI. SOME REMARKS ON RELIABILITY OF ESTIMATES
Asymptotic variances of estimates in the complete negative binomial
distribution have been given by Anscombe [l1], and by Bliss and Fisher [2].
Similar results in the truncated case were given by Sampford [10] and
by Hartley [8]. 1In the interest of completeness, these results are

presented here without proof.

In the complete negative binomial distribution,

<% +-EE> /n,

. 2k(k + 1)
n(l - p)2

V(x)

(36)

vV (k¥*)

pK -1 -%k( - p)

: (37)
n[-in p - (1 - p)]®

v (k**) =

~ . 2k(k 1

- 4(1 - p) L 3a - p)2
n(l - p)= 3Gk +2) (k+2) (k+3)

+ ... (38)

24




The variances of k*** and p*** in the complete negative binomial
distribution remain to be determired. In the preceding variances, a
single asterisk (*¥) denotes a moment estimate, double asterisks (*%)
denote an estimate based on the mean and the proportion of ones, the
circumflex (~) denotes maximum likelihood estimates, while triple
asterisks (*%*) denote estimates based on the mean and the proportion
of omnes.

In the truncated negative binomial distribution, variances and
covariances of the maximum likelihood estimates are obtained in the
usual manner by inverting the information matrix in which the components
are expected values of the quantities

-3%In L nk[l - (k + 1) pk] N nx

»2 p2(1 - pk)2 a-p?
_azln L _ n[l - (1 -k 1In P) pk] (39)
o 3k p(l - pk)2 ,
R R
a 1n L _ ;‘ (k +x - 1)—2 y nj - n(].n P) p aap) b
- " L, L, (1 - pk)2
x=1

It is usually satisfactory to use these quantities themselves rather than
their expected values.

Variances of the ordinary moment estimators (based on the first two
moments) are given by Sampford [10], while Brass [3] gave variances of
his estimators. In both of these cases the expressions obtained are
rather complicated and are not repeated here.
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For the distribution of red mites on apple leaves, considered in
Section V, it follows from (36) that

.. 1.14667 + 1.28330
V(R) = = 0,01620,
150

_ 2(L.1667) (1.1667 + 1)
V(k*) = = 0,1372.
150(0.49567)2

Accordingly, sz = 0,1273 and sy« = 0,370.

. From equation (38) it follows that

v(k) = 0.07614, and s = 0.276.

In the example of chromosome breakage employed to illustrate
estimation in the truncated negative binomial distribution, Sampford {10]
calculated moment estimate variances and covariances to be

V(p*) = 0.015091, Cov(p*, k*) = 0.08125, and V(k*) = 0.4983.
Corresponding values. for maximum likelihood estimates were found to be

V(P) = 0.009863, Cov(p, K) = 0.04719, and V(k) = 0.2763.
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ERRATA SHEET

NASA ™ X-53372, "Estimation in the Negative Binomial Distribution,"
by A. Clifford Cohen, Jr., Marshall Space Flight Center, December 21,
1965,

Enclosed is an erratum for T™M X-53372. This equation (the first
part of equation (9) on page 5) was omitted in the reproduction process.
All recipients of this report should remove the backing from the
enclosed equation and stick the equation on the top of page 5 just
above the first equation appearing on that page.
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